Part Number Hot Search : 
M100A 4V3BSB AD5045 DA9155M CR331 BY251 CR331 DS1216F
Product Description
Full Text Search
 

To Download HCPL-4562-020 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  features ? wide bandwidth [1] : 17 mhz (hcpl-4562) 9 mhz (hcnw4562) ? high voltage gain [1] : 2.0 (hcpl-4562) 3.0 (hcnw4562) ? low g v temperature coefcient: -0.3%/c ? highly linear at low drive currents ? high-speed algaas emitter ? safety approval: ul recognized C 3750 v rms for 1 minute (5000 v rms for 1 minute for hcpl-4562#020 and hcnw4562) per ul 1577 csa approved iec/en/din en 60747-5-2 approved C v iorm = 1414 v peak for hcnw4562 ? available in 8-pin dip and widebody packages applications ? video isolation for the follo w ing standards/formats: ntsc, pal, secam, s-vhs, analog rgb ? low drive current feedback element in switching power supplies, e.g., for isdn networks ? a/d converter signal isolation ? analog signal ground isolation ? high voltage insulation caution: it is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by esd. 7 1 2 3 4 5 6 8 nc anode cathode nc v cc v b v o gnd hcpl-4562 functional diagram hcpl-4562, hcnw4562 high bandwidth, analog/video optocouplers data sheet description the hcpl-4562 and hcnw4562 optocouplers provide wide ban d width isolation for analog signals. they are ideal for video isolation when combined with their application circuit (figure 4). high linearity and low phase shift are achieved through an algaas led combined with a high speed detector. these single channel optocouplers are avai l able in 8 - pin dip and widebody package confgurations. functional diagram
2 hcpl-4562 schematic i f 8 6 5 gnd v cc 2 3 v o i cc v f i o anode cathode + ? 7 v b i b schematic to order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry. example 1: hcpl-4562-520e to order product of gull wing surface mount package in tape and reel packaging with ul 5000 vrms/1 minute rating and rohs compliant. example 2: hcnw4562 to order product of 8-pin widebody dip package in tube packaging with iec/en/din en 60747-5- 2 v iorm = 1414 v peak safety approval and ul 5000 vrms/1 minute rating and non rohs compliant. option datasheets are available. contact your avago sales representative or authorized distributor for information. remarks: the notation #xxx is used for existing products, while (new) products launched since july 15, 2001 and rohs compliant will use Cxxxe. selection guide single channel packages 8-pin dip widebody (300 mil) (400 mil) hcpl-4562 hcnw4562 ordering information hcpl-4562 is ul recognized with 3750 vrms for 1 minute per ul1577 unless otherwise specifed. hcnw4562 is ul recognized with 5000 vrms for 1 minute per ul1577. option part rohs non rohs surface gull tape ul 5000 vrms/ iec/en/din number compliant compliant package mount wing & reel 1 minute rating en 60747-5-2 quantity -000e no option 300 mil dip-8 50 per tube -300e #300 x x 50 per tube -500e #500 x x x 1000 per reel hcpl-4562 -020e #020 x 50 per tube -320e #320 x x x 50 per tube -520e #520 x x x x 1000 per reel -060e #060 x [1] 50 per tube -000e no option 400 mil x x [2] 42 per tube hcnw4562 -300e #300 widebody x x x x [2] 42 per tube -500e #500 dip-8 x x x x x [2] 750 per reel notes: 1. iec/en/din en 60747-5-2 v iorm = 630 v peak safety approval. 2. iec/en/din en 60747-5-2 v iorm = 1414 v peak safety approval.
3 package outline drawings 8-pin dip package (hcpl-4562) 8-pin dip package with gull wing surface mount option 300 (hcpl-4562) 1.080 0.320 (0.043 0.013) 2.54 0.25 (0.100 0.010) 0.51 (0.020) min. 0.65 (0.025) max. 4.70 (0.185) max. 2.92 (0.115) min. 5 typ. 0.254 + 0.076 - 0.051 (0.010 + 0.003) - 0.002) 7.62 0.25 (0.300 0.010) 6.35 0.25 (0.250 0.010) 9.65 0.25 (0.380 0.010) 1.78 (0.070) max. 1.19 (0.047) max. a xxxxz yyw w date code dimensions in millimeters and (inches). 5 6 7 8 4 3 2 1 option code* ul recognition ur type number * marking code letter for option numbers "l" = option 020 option numbers 300 and 500 not marked. note: floating lead protrusion is 0.25 mm (10 mils) max. 3.56 0.13 (0.140 0.005) 0.635 0.25 (0.025 0.010) 12 nom. 9.65 0.25 (0.380 0.010) 0.635 0.130 (0.025 0.005) 7.62 0.25 (0.300 0.010) 5 6 7 8 4 3 2 1 9.65 0.25 (0.380 0.010) 6.350 0.25 (0.250 0.010) 1.016 (0.040) 1.27 (0.050) 10.9 (0.430) 2.0 (0.080) land pattern recommendation 1.080 0.320 (0.043 0.013) 3.56 0.13 (0.140 0.005) 1.780 (0.070) max. 1.19 (0.047) max. 2.54 (0.100) bsc dimensions in millimeters (inches). lead coplanarity = 0.10 mm (0.004 inches). note: floating lead protrusion is 0.25 mm (10 mils) max. 0.254 + 0.076 - 0.051 (0.010 + 0.003) - 0.002)
4 8-pin widebody dip package (hcnw4562) 8-pin widebody dip package with gull wing surface mount option 300 (hcnw4562) 5 6 7 8 4 3 2 1 11.15 0.15 (0.442 0.006) 1.78 0.15 (0.070 0.006) 5.10 (0.201) max. 1.55 (0.061) max. 2.54 (0.100) typ. dimensions in millimeters (inches). note: floating lead protrusion is 0.25 mm (10 mils) max. 7 typ. 0.254 + 0.076 - 0.0051 (0.010 + 0.003) - 0.002) 11.00 (0.433) 9.00 0.15 (0.354 0.006) max. 10.16 (0.400) typ. a hcnwxxxx yyw w date code type number 0.51 (0.021) min. 0.40 (0.016) 0.56 (0.022) 3.10 (0.122) 3.90 (0.154) 1.00 0.15 (0.039 0.006) 7 nom. 12.30 0.30 (0.484 0.012) 0.75 0.25 (0.030 0.010) 11.00 (0.433) 5 6 7 8 4 3 2 1 11.15 0.15 (0.442 0.006) 9.00 0.15 (0.354 0.006) 1.3 (0.051) 13.56 (0.534) 2.29 (0.09) land pattern recommendation 1.78 0.15 (0.070 0.006) 4.00 (0.158) max. 1.55 (0.061) max. 2.54 (0.100) bsc dimensions in millimeters (inches). lead coplanarity = 0.10 mm (0.004 inches). note: floating lead protrusion is 0.25 mm (10 mils) max. 0.254 + 0.076 - 0.0051 (0.010 + 0.003) - 0.002) max.
5 solder refow temperature profle regulatory information the devices contained in this data sheet have been approved by the following organizations: iec/en/din en 60747-5-2 approved under: iec 60747-5-2:1997 + a1:2002 en 60747-5-2:2001 + a1:2002 din en 60747-5-2 (vde 0884 teil 2):2003-01 (hcnw4562 only) recommended pb-free ir profle 0 time (seconds) temperature (c) 200 100 50 150 100 200 250 300 0 30 sec. 50 sec. 30 sec. 160c 140c 150c peak temp . 245c peak temp . 240c peak temp. 230c soldering tim e 200c preheating tim e 150c, 90 + 30 sec. 2.5c 0.5c/sec. 3c + 1c/?0.5c tight typical loos e room temperature preheating rate 3c + 1c/?0.5c/sec. reflow heating rate 2.5c 0.5c/sec. 217 c ramp-d ow n 6 c/sec. max. ramp-u p 3 c/sec . max . 150 - 200 c * 260 +0/-5 c t 25 c to pea k 60 to 150 sec. 20-40 sec. time w ithin 5 c of ac tu al peak tempera t ure t p t s prehea t 60 to 180 sec. t l t l t smax t smin 25 t p tim e tempera ture no tes: the time fr om 25 c to peak tempera ture = 8 minutes max. t smax = 200 c, t smin = 150 c note: non-halide flux should be used. * recommended peak temperature f or widebod y 400 mils pac kage is 245c note: non-halide fux should be used. ul recognized under ul 1577, component recognition program, file e55361. csa approved under csa component acceptance notice #5, file ca 88324.
6 insulation and safety related specifcations 8-pin dip widebody (300 mil) (400 mil) parameter symbol value value units conditions minimum external l(101) 7.1 9.6 mm measured from input terminals to air gap (external output terminals, shortest distance clearance) through air. minimum external l(102) 7.4 10.0 mm measured from input terminals to tracking (external output terminals, shortest distance creepage) path along body. minimum internal 0.08 1.0 mm through insulation distance, plastic gap conductor to conductor, usually the (internal clearance) direct distance between the photo- emitter and photodetector inside the optocoupler cavity. minimum internal na 4.0 mm measured from input terminals to tracking (internal output terminals, along internal cavity. creepage) tracking resistance cti 200 200 volts din iec 112/vde 0303 part 1 (comparative tracking index) isolation group iiia iiia material group (din vde 0110, 1/89, table 1) option 300 - surface mount classifcation is class a in accordance with cecc 00802. iec/en/din en 60747-5-2 insulation related characteristics (hcnw4562 only) description symbol characteristic units installation classifcation per din vde 0110/1.89, table 1 for rated mains voltage 600 v rms i-iv for rated mains voltage 1000 v rms i-iii climatic classifcation 55/85/21 pollution degree (din vde 0110/1.89) 2 maximum working insulation voltage v iorm 1414 v peak input to output test voltage, method b* v iorm x 1.875 = v pr , 100% production test with t m = 1 sec, v pr 2652 v peak partial discharge < 5 pc input to output test voltage, method a* v iorm x 1.5 = v pr , type and sample test, v pr 2121 v peak t m = 60 sec, partial discharge < 5 pc highest allowable overvoltage* (transient overvoltage, t ini = 10 sec) v iotm 8000 v peak safety limiting values (maximum values allowed in the event of a failure, also see figure 17, thermal derating curve.) case temperature t s 150 c input current i s,input 400 ma output power p s,output 700 mw insulation resistance at t s , v io = 500 v r s 10 9 *refer to the front of the optocoupler section of the current catalog, under product safety regulations section iec/en/din en 60747-5-2, for a detailed description. note: isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application.
7 absolute maximum ratings parameter symbol device min. max. units note storage temperature t s -55 125 c operating temperature t a -40 85 c average forward input current i f(avg) hcpl-4562 12 ma hcnw4562 25 peak forward input current i f(peak) hcpl-4562 18.6 ma hcnw4562 40 efective input current i f(eff) hcpl-4562 12.9 ma rms reverse led input voltage (pin 3-2) v r hcpl-4562 1.8 v hcnw4562 3 input power dissipation p in hcnw4562 40 mw average output current (pin 6) i o(avg) 8 ma peak output current (pin 6) i o(peak) 16 ma emitter-base reverse voltage (pin 5-7) v ebr 5 v supply voltage (pin 8-5) v cc -0.3 30 v output voltage (pin 6-5) v o -0.3 20 v base current (pin 7) i b 5 ma output power dissipation p o 100 mw 2 lead solder temperature t ls hcpl-4562 260 c hcnw4562 260 c refow temperature profle t rp option see package outline 300 drawings section 1.6 mm below seating plane, 10 seconds up to seating plane, 10 seconds recommended operating conditions parameter symbol device min. max. units note operating temperature t a hcpl-4562 -10 70 c quiescent input current i fq hcpl-4562 6 ma hcnw4562 10 peak input current i f(peak) hcpl-4562 10 ma hcnw4562 17
8 electrical specifcations (dc) t a = 25c, i f = 6 ma for hcpl-4562 and i f = 10 ma for hcnw4562 (i.e., recommended i fq ) unless otherwise specifed. parameter symbol device min. typ.* max. units test conditions fig. note base photo i pb 13 31 65 a i f = 10 ma v pb 5 v 2, 6 current hcpl-4562 19.2 i f = 6 ma i pb ?i pb / -0.3 %/c 2 ma < i f < 10 ma, 2 temperature ?t v pb 5 v coefcient i pb hcpl-4562 0.25 % 2 ma < i f < 10 ma 2, 6 3 nonlinearity hcnw4562 0.15 6 ma < i f < 14 ma input forward v f hcpl-4562 1.1 1.3 1.6 v i f = 5 ma 5 voltage hcnw4562 1.2 1.6 1.8 i f = 10 ma input reverse bv r hcpl-4562 1.8 5 v i r = 10 a breakdown hcnw4562 3 i r = 100 a voltage transistor h fe 60 160 i c = 1 ma, current gain v ce = 1.25 v current ctr hcpl-4562 45 % v ce = 1.25 v, 8, 9 4 transfer ratio hcnw4562 52 v pb 5 v dc output v out hcpl-4562 4.25 v g v = 2, v cc = 9 v 4, voltage hcnw4562 5.0 15
9 small signal characteristics (ac) t a = 25c, i f = 6 ma for hcpl-4562 and i f = 10 ma for hcnw4562 (i.e., recommended i fo ) unless otherwise specifed. parameter symbol device min. typ.* max. units test conditions fig. note v oltage gain g v hcpl-4562 0.8 2.0 4.2 v in = 1 v p-p 1 6 (0.1 mhz) hcnw4562 3.0 g v temperature ?g v /?t -0.3 %/c v in = 1 v p-p , 1, 11 coefcient f ref = 0.1 mhz base photo ?i pb hcpl-4562 1.1 3.0 -db v in = 1 v p-p , 3, 10, current (6 mhz) hcnw4562 0.36 f ref = 0.1 mhz 12 variation -3 db frequency i pb hcpl-4562 6 15 mhz v in = 1 v p-p , 3, 10, 7 (i pb ) (-3 db) hcnw4562 13 f ref = 0.1 mhz 12 -3 db frequency g v hcpl-4562 6 17 mhz v in = 1 v p-p , 1, 11 7 (g v ) (-3 db) hcnw4562 9 f ref = 0.1 mhz gain variation ?g v hcpl-4562 1.1 3.0 -db t a = 25c v in = 1 v p-p , 1, 11 (6 mhz) hcnw4562 0.54 f ref = 0.1 mhz hcpl-4562 0.8 t a = -10c 1.5 t a = 70c ?g v hcpl-4562 1.15 -db v in = 1 v p-p , (10 mhz) hcnw4562 2.27 f ref = 0.1 mhz diferential hcpl-4562 1.0 % i fac = 0.7 ma p-p, 3, 7 8 gain at i fdc = 3 to 9 ma f = 3.58 mhz hcnw4562 0.9 i fac = 1 ma p-p, i fdc = 7 to 13 ma diferential hcpl-4562 1 deg. i fac = 0.7 ma p-p, 3, 7 9 phase at i fdc = 3 to 9 ma f = 3.58 mhz hcnw4562 0.6 i fac = 1 ma p-p, i fdc = 7 to 13 ma total harmonic thd hcpl-4562 2.5 % v in = 1 v p-p , 4 10 distortion hcnw4562 0.75 f = 3.58 mhz, g v = 2 output noise v o (noise) 950 v rms 10 hz to 10 mhz 1 voltage isolation mode imrr hcpl-4562 122 db f = 120 hz, g v = 2 14 11 rejection ratio hcnw4562 119
10 notes: 1. when used in the circuit of figure 1 or figure 4; g v = v out /v in ; i fq = 6 ma (hcpl-4562), i fq = 10 ma (hcnw4562). 2. derate linearly above 70c free-air temperature at a rate of 2.0 mw/c (hcpl-4562). 3. maximum variation from the best ft line of i pb vs. i f expressed as a percentage of the peak-to-peak full scale output. 4. current transfer ratio (ctr) is defned as the ratio of output collector current, i o , to the forward led input current, i f , times 100%. 5. device considered a two-terminal device: pins 1, 2, 3, and 4 shorted together and pins 5, 6, 7, and 8 shorted together. 6. flat-band, small-signal voltage gain. 7. the frequency at which the gain is 3 db below the fat-band gain. 8. diferential gain is the change in the small-signal gain of the optocoupler at 3.58 mhz as the bias level is varied over a given range. 9. diferential phase is the change in the small-signal phase response of the optocoupler at 3.58 mhz as the bias level is varied over a given range. 10. total harmonic distortion (thd) is defned as the square root of the sum of the square of each harmonic distortion component. the thd of the isolated video circuit is measured using a 2.6 k load in series with the 50 input impedance of the spectrum analyzer. 11. isolation mode rejection ratio (imrr), a measure of the optocouplers ability to reject signals or noise that may exist between input and output terminals, is defned by 20 log 10 [(v out /v in )/(v out /v im )], where v im is the isolation mode voltage signal. 12. in accordance with ul 1577, each optocoupler is proof tested by appl y ing an insulation test voltage 4500 v rms for 1 second (leakage detec - tion current limit, i i-o 5 a). this test is performed before the 100% production test shown in the iec/en/din en 60747-5-2 insulation related chara c teristics table, if applicable. 13. in accordance with ul 1577, each optocoupler is proof tested by applying an insulation test voltage 6000 v rms for 1 second (leakage detec - tion current limit, i i-o 5 a). this test is performed before the 100% production test shown in the iec/en/din en 60747-5-2 insulation related characteristics table, if applicable. package characteristics all typicals at t a = 25c parameter sym. device min. typ. max. units test conditions fig. note input-output v iso hcpl-4562 3750 v rms rh 50%, 5, 12 momentary hcnw4562 5000 t = 1 min., 5, 13 withstand hcpl-4562 5000 t a = 25c 5, 13 voltage* (option 020) input-output r i-o hcpl-4562 10 12 v i-o = 500 vdc 5 resistance hcnw4562 10 12 10 13 t a = 25c 10 11 t a = 100c input-output c i-o hcpl-4562 0.6 pf f = 1 mhz 5 capacitance hcnw4562 0.5 0.6 *the input-output momentary withstand voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. for the continuous voltage rating refer to the vde 0884 insulation related characteristics table (if applicable), your equipment level safety specifcation or avago application note 1074 entitled optocoupler input-output endurance voltage, publication number 5963-2203e.
11 figure 1. gain and bandwidth test circuit figure 2. base photo current test circuit figure 3. base photo current frequency response test circuit figure 4. recommended isolated video interface circuit 162 (hcpl-4562) 90.9 (hcnw4562) 162 (hcpl-4562) 90.9 (hcnw4562)
12 figure 5. input current vs. forward voltage figure 6. base photo current vs. input current figure 7. small-signal response vs. input current hcpl-4562 fig 7a small-signal gain 0 0.92 i f ? input current ? ma 20 4 1 12 2 8 10 16 1.02 0.96 0.94 0.98 18 6 1 4 phase gain 1 2 0 -1 -2 -3 small-signal phase ? degrees normalized i f = 6 ma f = 3.58 mhz t a = 25 c see fig. 3 hcpl-4562 fig 5a i f ? input forward voltage ? ma 1.0 0.01 v f ? forward voltage ? v 1.5 1.1 1.0 1.2 10 100 0.1 v f i f 1.3 hcpl-4562 1.4 + ? t a = 70 c t a = 25 c t a = -10 c hcpl-4562 fig 6a i pb ? base photo current ? a 0 0 i f ? input current ? ma 20 4 70 12 2 8 10 16 80 30 20 50 18 6 1 4 t a = 25 c v pb > 5 v hcpl-4562 60 40 10 hcpl-4562 hcnw4562 hcnw4562 hcnw4562
13 figure 8. current transfer ratio vs. temperature figure 9. current transfer ratio vs. input current figure 10. base photo current variation vs. bias conditions hcpl-4562 fig 8a normalized current transfer ratio -10 0.86 t ? temperature ? c 70 10 1.02 40 0 2 0 3 0 5 0 1.04 0.94 0.92 0.98 60 hcpl-4562 1.00 0.96 0.88 normalized t a = 25 c i f = 6.0 ma v ce = 1.25 v v pb > 5 v 0.90 hcpl-4562 fig 9a ctr ? normalized current transfer ratio 0 0.50 i f ? input current ? ma 20 4 1.00 12 2 8 10 16 1.10 0.70 0.60 0.90 18 6 1 4 v ce = 5.0 v normalized t a = 25 c i f = 6 ma v ce = 1.25 v v pb > 5 v 0.80 v ce = 1.25 v v ce = 0.4 v hcpl-4562 hcpl-4562 fig 10a ? i pb ? base photo current variation ? db 1 -2.7 i fq ? quiescent input current ? ma 12 3 -1.1 6 2 4 5 7 -0.9 -1.9 -2.1 -1.5 8 hcpl-4562 -1.3 -1.7 -2.5 t a = 25 c f ref = 0.1 mhz -2.3 9 1 0 1 1 frequency = 6 mh z frequency = 10 mh z hcnw4562 hcnw4562 hcnw4562
14 figure 11. normalized voltage gain vs. frequency figure 12. normalized base photo current vs. frequency figure 13. phase vs. frequency hcpl-4562 fig 13a ? ? phase ? degrees 0 -250 f ? frequency ? mh z 20 -25 6 2 4 0 -150 -175 -100 8 hcpl-4562 -75 -125 -225 video interface circuit phase see figure 4 -200 10 12 -50 14 16 18 t a = 25 c i pb phase see figure 3 hcpl-4562 fig 12a normalized base photo current ? db 0.01 -4.5 f ? frequency ? khz 100,000 0 10 0.1 1.0 0.5 -2.5 -3.0 -1.5 100 hcpl-4562 -1.0 -2.0 -4.0 normalized t a = 25 c f = 0.1 mh z -3.5 1000 10,000 -0.5 hcpl-4562 fig 11a normalized voltage gain ? db 0.01 -7 f ? frequency ? khz 100,000 2 10 0.1 1.0 3 -3 -4 -1 100 hcpl-4562 0 -2 -6 normalized t a = 25 c f = 0.1 mh z -5 1000 10,000 t a = -10 c t a = 70 c 1 t a = 25 c hcnw4562 hcnw4562 hcnw4562
15 figure 17. thermal derating curve, dependence of safety limiting value with case temperature per iec/ en/din en 60747-5-2 figure 14. isolation mode rejection ratio vs. frequency figure 15. dc output voltage vs. transistor current gain figure 16. output bufer stage for low imped - ance loads hcpl-4562 fig 16 i c q4 = 2 ma r 9 q 3 r 10 r 11 q 4 q 5 r 12 v out v cc low impedance load additional buffer stage output power ? p s , input current ? i s 0 0 t s ? case temperature ? c 175 hcpl-4562 fig 17b 1000 50 400 125 25 75 100 150 600 800 200 100 300 500 700 900 p s (mw) i s (ma) hcnw4562 hcpl-4562 fig 14a imrr ? isolation mode rejection ratio ? db 0.01 0 f ? frequency ? khz 10,000 0.1 150 60 90 1.0 hcpl-4562 30 10 120 100 1000 t a = 25 c -20 db/decade slope g v v out / v im imrr = 20 log 10 hcpl-4562 fig 15a v o ? dc output voltage ? v 50 3.0 h fe ? transistor current gain 450 150 5.5 100 250 350 6.0 4.0 3.5 5.0 400 200 300 4.5 hcpl-4562 hcnw4562 hcnw4562
16 conversion from hcpl-4562 to hcnw4562 in order to obtain similar circuit performance when converting from the hcpl-4562 to the hcnw4562, it is recommended to increase the quiescent input current, i fq , from 6 ma to 10 ma. if the application circuit in figure 4 is used, then potentio m eter r4 should be adjusted appropriately. design considerations of the application circuit the app?ication circuit in figure 4 incorporates several features that help maximize the bandwidth performance of the hcpl-4562/hcnw4562. most important of these features is peaked response of the detector circuit that helps extend the frequency range over which the voltage gain is relatively constant. the number of gain stages, the overall circuit topology, and the choice of dc bias points are all consequences of the desire to maximize bandwidth performance. to use the circuit, frst select r 1 to set v e for the desired led quiescent current by: figure 15 shows the dependency of the dc output voltage on h fex . for 9 v < v cc < 12 v, select the value of r 11 such that v e g v v e r 1 0 i f q = ? ( 1 ) r 4 ( ? i p b / ? i f ) r 7 r 9 i f p - p ? v i n / r 4 ( 2 ) i f p - p i p b p - p v i n p - p ? = ( 3 ) i f q i p b q v e i f ( p - p ) v i n p - p f a c t o r ( m f ) : = ( 4 ) 2 i f q 2 v e r 9 v o = v c c ? v b e [ v b e x - ( i p b q - i b x q ) r 7 ] ( 5 ) r 1 0 g v v e r 1 0 i p b q ? ( 6 ) r 7 r 9 v c c - 2 v b e i b x q ? ( 7 ) r 6 h f e x v o 4 . 2 5 v i c q 4 ? ? ? 9 . 0 m a ( 8 ) r 1 1 4 7 0 r 9 1 * ( 9 ) r 1 0 1 1 + s r 9 c c q 2 ? r ? 1 1 f t 4 v o u t ? i p b r 7 r 9 g v ? ? ( 1 0 ) v i n ? i f r 4 r 1 0 ? i p b w h e r e t y p i c a l l y ? i f p - p 4 ( p - p ) p - p p - p p - p p - p q 4 3 4 = 0 . 0 0 3 2 ? + v e g v v e r 1 0 i f q = ? ( 1 ) r 4 ( ? i p b / ? i f ) r 7 r 9 i f p - p ? v i n / r 4 ( 2 ) i f p - p i p b p - p v i n p - p ? = ( 3 ) i f q i p b q v e i f ( p - p ) v i n p - p f a c t o r ( m f ) : = ( 4 ) 2 i f q 2 v e r 9 v o = v c c ? v b e [ v b e x - ( i p b q - i b x q ) r 7 ] ( 5 ) r 1 0 g v v e r 1 0 i p b q ? ( 6 ) r 7 r 9 v c c - 2 v b e i b x q ? ( 7 ) r 6 h f e x v o 4 . 2 5 v i c q 4 ? ? ? 9 . 0 m a ( 8 ) r 1 1 4 7 0 r 9 1 * ( 9 ) r 1 0 1 1 + s r 9 c c q 2 ? r ? 1 1 f t 4 v o u t ? i p b r 7 r 9 g v ? ? ( 1 0 ) v i n ? i f r 4 r 1 0 ? i p b w h e r e t y p i c a l l y ? i f p - p 4 ( p - p ) p - p p - p p - p p - p q 4 3 4 = 0 . 0 0 3 2 ? + v e g v v e r 1 0 i f q = ? ( 1 ) r 4 ( ? i p b / ? i f ) r 7 r 9 i f p - p ? v i n / r 4 ( 2 ) i f p - p i p b p - p v i n p - p ? = ( 3 ) i f q i p b q v e i f ( p - p ) v i n p - p f a c t o r ( m f ) : = ( 4 ) 2 i f q 2 v e r 9 v o = v c c ? v b e [ v b e x - ( i p b q - i b x q ) r 7 ] ( 5 ) r 1 0 g v v e r 1 0 i p b q ? ( 6 ) r 7 r 9 v c c - 2 v b e i b x q ? ( 7 ) r 6 h f e x v o 4 . 2 5 v i c q 4 ? ? ? 9 . 0 m a ( 8 ) r 1 1 4 7 0 r 9 1 * ( 9 ) r 1 0 1 1 + s r 9 c c q 2 ? r ? 1 1 f t 4 v o u t ? i p b r 7 r 9 g v ? ? ( 1 0 ) v i n ? i f r 4 r 1 0 ? i p b w h e r e t y p i c a l l y ? i f p - p 4 ( p - p ) p - p p - p p - p p - p q 4 3 4 = 0 . 0 0 3 2 ? + v e g v v e r 1 0 i f q = ? ( 1 ) r 4 ( ? i p b / ? i f ) r 7 r 9 i f p - p ? v i n / r 4 ( 2 ) i f p - p i p b p - p v i n p - p ? = ( 3 ) i f q i p b q v e i f ( p - p ) v i n p - p f a c t o r ( m f ) : = ( 4 ) 2 i f q 2 v e r 9 v o = v c c ? v b e [ v b e x - ( i p b q - i b x q ) r 7 ] ( 5 ) r 1 0 g v v e r 1 0 i p b q ? ( 6 ) r 7 r 9 v c c - 2 v b e i b x q ? ( 7 ) r 6 h f e x v o 4 . 2 5 v i c q 4 ? ? ? 9 . 0 m a ( 8 ) r 1 1 4 7 0 r 9 1 * ( 9 ) r 1 0 1 1 + s r 9 c c q 2 ? r ? 1 1 f t 4 v o u t ? i p b r 7 r 9 g v ? ? ( 1 0 ) v i n ? i f r 4 r 1 0 ? i p b w h e r e t y p i c a l l y ? i f p - p 4 ( p - p ) p - p p - p p - p p - p q 4 3 4 = 0 . 0 0 3 2 ? + v e g v v e r 1 0 i f q = ? ( 1 ) r 4 ( ? i p b / ? i f ) r 7 r 9 i f p - p ? v i n / r 4 ( 2 ) i f p - p i p b p - p v i n p - p ? = ( 3 ) i f q i p b q v e i f ( p - p ) v i n p - p f a c t o r ( m f ) : = ( 4 ) 2 i f q 2 v e r 9 v o = v c c ? v b e [ v b e x - ( i p b q - i b x q ) r 7 ] ( 5 ) r 1 0 g v v e r 1 0 i p b q ? ( 6 ) r 7 r 9 v c c - 2 v b e i b x q ? ( 7 ) r 6 h f e x v o 4 . 2 5 v i c q 4 ? ? ? 9 . 0 m a ( 8 ) r 1 1 4 7 0 r 9 1 * ( 9 ) r 1 0 1 1 + s r 9 c c q 2 ? r ? 1 1 f t 4 v o u t ? i p b r 7 r 9 g v ? ? ( 1 0 ) v i n ? i f r 4 r 1 0 ? i p b w h e r e t y p i c a l l y ? i f p - p 4 ( p - p ) p - p p - p p - p p - p q 4 3 4 = 0 . 0 0 3 2 ? + v e g v v e r 1 0 i f q = ? ( 1 ) r 4 ( ? i p b / ? i f ) r 7 r 9 i f p - p ? v i n / r 4 ( 2 ) i f p - p i p b p - p v i n p - p ? = ( 3 ) i f q i p b q v e i f ( p - p ) v i n p - p f a c t o r ( m f ) : = ( 4 ) 2 i f q 2 v e r 9 v o = v c c ? v b e [ v b e x - ( i p b q - i b x q ) r 7 ] ( 5 ) r 1 0 g v v e r 1 0 i p b q ? ( 6 ) r 7 r 9 v c c - 2 v b e i b x q ? ( 7 ) r 6 h f e x v o 4 . 2 5 v i c q 4 ? ? ? 9 . 0 m a ( 8 ) r 1 1 4 7 0 r 9 1 * ( 9 ) r 1 0 1 1 + s r 9 c c q 2 ? r ? 1 1 f t 4 v o u t ? i p b r 7 r 9 g v ? ? ( 1 0 ) v i n ? i f r 4 r 1 0 ? i p b w h e r e t y p i c a l l y ? i f p - p 4 ( p - p ) p - p p - p p - p p - p q 4 3 4 = 0 . 0 0 3 2 ? + v e g v v e r 1 0 i f q = ? ( 1 ) r 4 ( ? i p b / ? i f ) r 7 r 9 i f p - p ? v i n / r 4 ( 2 ) i f p - p i p b p - p v i n p - p ? = ( 3 ) i f q i p b q v e i f ( p - p ) v i n p - p f a c t o r ( m f ) : = ( 4 ) 2 i f q 2 v e r 9 v o = v c c ? v b e [ v b e x - ( i p b q - i b x q ) r 7 ] ( 5 ) r 1 0 g v v e r 1 0 i p b q ? ( 6 ) r 7 r 9 v c c - 2 v b e i b x q ? ( 7 ) r 6 h f e x v o 4 . 2 5 v i c q 4 ? ? ? 9 . 0 m a ( 8 ) r 1 1 4 7 0 r 9 1 * ( 9 ) r 1 0 1 1 + s r 9 c c q 2 ? r ? 1 1 f t 4 v o u t ? i p b r 7 r 9 g v ? ? ( 1 0 ) v i n ? i f r 4 r 1 0 ? i p b w h e r e t y p i c a l l y ? i f p - p 4 ( p - p ) p - p p - p p - p p - p q 4 3 4 = 0 . 0 0 3 2 ? + v e g v v e r 1 0 i f q = ? ( 1 ) r 4 ( ? i p b / ? i f ) r 7 r 9 i f p - p ? v i n / r 4 ( 2 ) i f p - p i p b p - p v i n p - p ? = ( 3 ) i f q i p b q v e i f ( p - p ) v i n p - p f a c t o r ( m f ) : = ( 4 ) 2 i f q 2 v e r 9 v o = v c c ? v b e [ v b e x - ( i p b q - i b x q ) r 7 ] ( 5 ) r 1 0 g v v e r 1 0 i p b q ? ( 6 ) r 7 r 9 v c c - 2 v b e i b x q ? ( 7 ) r 6 h f e x v o 4 . 2 5 v i c q 4 ? ? ? 9 . 0 m a ( 8 ) r 1 1 4 7 0 r 9 1 * ( 9 ) r 1 0 1 1 + s r 9 c c q 2 ? r ? 1 1 f t 4 v o u t ? i p b r 7 r 9 g v ? ? ( 1 0 ) v i n ? i f r 4 r 1 0 ? i p b w h e r e t y p i c a l l y ? i f p - p 4 ( p - p ) p - p p - p p - p p - p q 4 3 4 = 0 . 0 0 3 2 ? + v e g v v e r 1 0 i f q = ? ( 1 ) r 4 ( ? i p b / ? i f ) r 7 r 9 i f p - p ? v i n / r 4 ( 2 ) i f p - p i p b p - p v i n p - p ? = ( 3 ) i f q i p b q v e i f ( p - p ) v i n p - p f a c t o r ( m f ) : = ( 4 ) 2 i f q 2 v e r 9 v o = v c c ? v b e [ v b e x - ( i p b q - i b x q ) r 7 ] ( 5 ) r 1 0 g v v e r 1 0 i p b q ? ( 6 ) r 7 r 9 v c c - 2 v b e i b x q ? ( 7 ) r 6 h f e x v o 4 . 2 5 v i c q 4 ? ? ? 9 . 0 m a ( 8 ) r 1 1 4 7 0 r 9 1 * ( 9 ) r 1 0 1 1 + s r 9 c c q 2 ? r ? 1 1 f t 4 v o u t ? i p b r 7 r 9 g v ? ? ( 1 0 ) v i n ? i f r 4 r 1 0 ? i p b w h e r e t y p i c a l l y ? i f p - p 4 ( p - p ) p - p p - p p - p p - p q 4 3 4 = 0 . 0 0 3 2 ? + for a constant value v inp-p , the circuit topology (adjusting the gain with r 4 ) preserves linearity by keeping the modulation factor (mf) dependent only on v e . modulation for a given g v , v e , and v cc , dc output voltage will vary only with h fex . where: and, the voltage gain of the second stage (q 3 ) is approximately equal to: increasing r 11 (r 11 includes the parallel combination of r 11 and the load impedance) or reducing r 9 (keeping r 9 /r 10 ratio constant) will improve the bandwidth. if it is necessary to drive a low impedance load, bandwidth may also be preserved by adding an additional emitter following the buffer stage (q 5 in figure 16), in which case r 11 can be increased to set i cq4 ? 2 ma. finally, adjust r 4 to achieve the desired voltage gain. defnition: g v = voltage gain i fq = quiescent led forward current i f p-p = peak-to-peak small signal led forward current v in p-p = peak-to-peak small signal input voltage i pb p-p = peak-to-peak small signal base photo current i pbq = quiescent base photo current v bex = base-emitter voltage of hcpl-4562/ hcnw4562 transistor i bxq = quiescent base current of hcpl-4562/ hcnw4562 transistor h fex = current gain (i c /i b ) of hcpl-4562/ hcnw4562 transistor v e = voltage across emitter degeneration resistor r 4 f t 4 = unity gain frequency of q 5 c cq 3 = efective capacitance from collector of q 3 to ground
for product information and a complete list of distributors, please go to our website: www.avagotech.com avago, avago technologies, and the a logo are trademarks of avago technologies limited in the united states and other countries. data subject to change. copyright ? 2005-2008 avago technologies limited. all rights reserved. obsoletes av01-0571en av02-1361en - june 23, 2008


▲Up To Search▲   

 
Price & Availability of HCPL-4562-020

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X